LOW PRESSURE CARBON DIOXIDE FIRE SUPPRESSION SYSTEM

FEATURES
- FM Approved
- Wide range of CO₂ storage units available (2 3/4 ton to 46 ton capacity)
- Hydraulic program for piping design and nozzle sizing
- CO₂ storage units are saddle mounted
- Low profile design

APPLICATIONS
The following are typical hazards protected by carbon dioxide systems:
- Printing presses
- Transformer vaults/electrical cabinets
- Open pits
- Dip tanks
- Rolling mills
- Coating machines
- Process equipment
- Exhaust and fume handling systems
- Flammable gas or liquid storage areas
- Generators
- Inerting applications

DESCRIPTION
The ANSUL® Commercial Low Pressure CO₂ Fire Suppression System is designed to meet the requirements of NFPA 12, “Standard on Carbon Dioxide Extinguishing Systems.” The system consists of a low pressure storage unit, master valves, selector valves, manual and automatic controls, distribution nozzles, alarms, indicators, and supervisory devices as required to maintain a supply of carbon dioxide in a discharge-ready state, and to provide effective distribution of agent on demand.

The low pressure system consists of liquid CO₂ stored in an ASME coded pressure vessel which is equipped with a refrigeration system. The pressure within the vessel is kept near 300 psi (20.7 bar) by maintaining the internal temperature at approximately 0 °F (–18 °C). A manually operated tank shut-off valve, which is used to isolate the supply from the distribution network, is fitted to the storage unit. Low pressure storage units are available in sizes from 2 3/4 ton up to 46 ton capacity. Distribution of CO₂ is accomplished through a selector valve, master/selector valve or a hand-hose line arrangement. A selector valve arrangement is commonly used when multiple hazards are protected from a common supply manifold that is located in close proximity to the storage unit. The master/selector valve arrangement is typically used to protect several hazards from the same supply manifold that is located in close proximity to the storage unit. Each master and selector valve assembly consists of a ball or butterfly valve, a spring return pneumatic valve operator and an electrically operated solenoid valve. Selector valves with spring return actuators, solenoid valves, and pneumatic delay timers are available. A listed and approved releasing control panel is used to provide automatic detection and control. CO₂ vapor from the storage container is regulated to approximately 100 psi (6.9 bar) and piped to the inlet of the electrically operated solenoid valve. Upon receipt of an electrical actuation signal from the releasing panel, the solenoid valve operates, opening the selector valve and allowing the CO₂ extinguishing agent to flow into the protected area. When the discharge timing cycle is complete, the electrical actuation signal is removed. Deactivation of the actuation signal returns the selector valve to its stand-by position.

COMPONENT DESCRIPTION
CO₂ Low Pressure Storage Unit: The low pressure storage unit is built to the ASME code for unfired pressure vessels. The storage unit is available in sizes from 2 3/4 ton up to 46 ton. The pressure vessel has piping for filling, for supplying CO₂ vapor to the system controls, and a large outlet for discharging CO₂ into the protected hazard. The pressure vessel is covered with 4 in. (102 mm) of polyurethane insulation. The insulation is covered with an aluminum vapor barrier. The pressure vessel is provided in a saddle mount configuration.

The pressure vessel is equipped with a safety relief valve(s) in accordance with ASME requirements. In addition to the safety relief valve required by ASME, the pressure vessel is also supplied with an auxiliary relief device known as a “bleeder” valve.

In the upper part of the pressure vessel, refrigerant evaporator coils serve to cool the stored CO₂. A refrigeration unit supplies low pressure refrigerant to the evaporator coils inside the pressure vessel. The refrigeration system extracts heat from the CO₂ vapor which surrounds the coils. The refrigeration compressor cycle is controlled by a pressure switch which monitors the pressure of the CO₂ within the vessel. Pressure of the CO₂ inside the tank is lowered to 295 psi (20.3 bar). The refrigeration compressor turns on when the CO₂ pressure reaches 305 psi (21.0 bar). When the vapor space temperature is cooled to about 0 °F (–18 °C), the CO₂ pressure switch opens to start the refrigerant pump-down cycle and turn off the compressor.
1.0 GENERAL

1.1 References
 1.1.1 Factory Mutual (FM)
 1.1.2 National Fire Protection Association (NFPA)
 1.1.2.1 NFPA Standard 12

1.2 Submittals
 1.2.1 Submit two sets of manufacturer’s component sheets
 1.2.2 Submit two sets of piping design drawings

1.3 System Description
 1.3.1 The system shall be an automatic fire suppression system using low pressure carbon dioxide extinguishing agent.
 1.3.2 The system shall be capable of suppressing fires in the following industrial related areas: Printing Presses, Transformer Vaults/Electrical Cabinets, Open Pits, Dip Tanks, Rolling Mills, Ovens, Coating Machines, Process Equipment, Exhaust and Fume Handling Systems, Flammable Gas or Liquid Storage Areas, Generators and Inerting Applications.
 1.3.3 The system shall be FM approved and of the engineered type with guidelines established by the manufacturer and having a computer aided flow program to determine pipe and nozzle requirements.
 1.3.4 The basic system shall consist of an agent storage unit, detection and control panel, discharge nozzles, and the necessary master and selector valves. Additional components shall be available for shutting down equipment and signaling system discharge. The system shall be fixed nozzle or hose reel type or a combination of both. The system shall be capable of total flooding, local application, or hand hose line design.
 1.3.5 The system shall be installed and serviced by personnel trained by the manufacturer.

1.4 Quality Control
 1.4.1 Manufacturer: The Low Pressure Carbon Dioxide System shall be manufactured by a company with at least ten years of experience in the design and manufacture of engineered fire suppression systems.

1.5 Warranty
 1.5.1 The low pressure CO₂ system components shall be warranted for one year from date of delivery.

1.6 Delivery
 1.6.1 Packaging: All system components shall be securely packaged to provide protection during shipment.

1.7 Environmental Conditions
 1.7.1 The low pressure storage unit shall be capable of operating in a temperature range of –10 °F to +120 °F (–23 °C to +49 °C).

2.0 PRODUCT

2.1 Manufacturer
 2.1.1 Tyco Fire Protection Products, One Stanton Street, Marinette, WI 54143, Telephone (715) 735-7411.

2.2 Components
 2.2.1 CO₂ Agent: The agent shall be a clean, dry, non-corrosive, non-damaging, non-deteriorating chemical. It shall dilute the oxygen content of the protected hazard to a point where it will not support combustion.

2.2.2 Low Pressure CO₂ Storage Unit: The storage unit shall be built to the ASME code for unfired pressure vessels. The unit shall be insulated with 4 in. (102 mm) of polyurethane insulation and covered with an aluminum vapor barrier. The unit shall be equipped with all necessary safety relief devices. The refrigeration system shall be capable of maintaining the liquid CO₂ at a storage pressure of 300 psi (20.7 bar).

2.2.3 Valves: Valves shall be capable of operating manually, pneumatically, or electro-pneumatically. They shall be either ball or butterfly design. They shall include a spring return actuator and manual override. Valves with pre-piped pneumatic delay timers shall be provided for all hazards that can endanger personnel as defined by NFPA 12.

2.2.4 Detection System: The detection system shall be listed and approved by UL and FM and approved by the manufacturer for use with the Low Pressure CO₂ system.

2.2.5 Nozzles: Nozzles shall be designed to direct the discharge of carbon dioxide in a liquid or gaseous state. The orifice size shall be determined by the manufacturer’s computerized flow calculation program and based on the flow rate and system design required. Nozzles shall be corrosion resistant and available in natural brass, stainless steel, zinc plated steel, or painted red.

2.2.6 Piping: Distribution and control piping shall meet the requirements stated in the manufacturer’s listed installation manual.

3.0 IMPLEMENTATION

3.1 Installation
 3.1.1 The Low Pressure CO₂ fire suppression system shall be designed, installed, inspected, maintained, and recharged in accordance with the manufacturer’s approved instruction manual.

3.1.2 Training: Training shall be conducted by representatives of the manufacturer.
CO₂ Agent: Carbon dioxide is an effective fire extinguishing agent that can be used on many types of fires. It is effective for surface fires, such as flammable liquids and most solid combustible materials. It expands at a ratio of 450 to 1 by volume. For fire suppression purposes, the discharge is designed to raise the carbon dioxide concentration in the hazard. This displaces the air, which contains oxygen that supports combustion, and results in fire suppression. Other attributes are its high degree of effectiveness, its excellent thermal stability, and its freedom from deterioration. It is electrically non-conductive, and leaves no residue to clean up after discharge.

Nozzles: Nozzles are designed to direct the discharge of CO₂ in the hazard area. The system design specifies the orifice size to be used for proper flow rate and distribution pattern. The nozzle selection depends on the hazard and location to be protected. Standard nozzles are painted red or are natural brass, depending on the type. All are corrosion resistant.

Distribution Valves: Valves which control the discharge of CO₂ into the protected space(s) can be arranged in one of two configurations: master/selector or selector. Operation of the valve(s) is done either pneumatically, electro-pneumatically, or manually.

MASTER/SELECTOR: There are two discharge valves in the flow path between the low pressure storage unit outlet and the discharge nozzles. Starting from the storage unit, the first valve is the “master” valve. The valve downstream of the master valve is the “selector” valve. In most master/selector valve systems, one master valve will serve several selector valves. The advantage to this type of configuration is that it permits installing a single pipe from the storage unit to several distant hazards. The savings in installation cost by installing a single pipe rather than multiple individual pipes may more than offset the cost of the master valve and controls.

SELECTOR: There is a single discharge valve in the flow path between the low pressure storage unit outlet and the discharge nozzles. This configuration is typically used to protect multiple hazards which are 1) Close to the low pressure storage unit. 2) Widely separated from other protected hazards. Cost of the equipment is less than that of a master/selector arrangement, but installation may be greater if several large diameter pipe runs must be installed from the low pressure storage unit to the hazards.

Hose Reels: In addition to the fixed pipe systems, hose reels can be supplied by a low pressure storage unit. Hose reels consist of a corrosion resistant painted reel. Several different lengths of 1 in. (25 mm) hose are available.

APPROVALS

ANSUL Low Pressure Carbon Dioxide Systems are designed to meet the requirements of NFPA 12 “Standard on Carbon Dioxide Extinguishing Systems.” They are Factory Mutual (FM) Approved.

ORDERING INFORMATION

Order all system components through your local ANSUL Distributor authorized to support the ANSUL Low Pressure CO₂ product line.
Dimensional Information Chart (E-Style Saddle Mounted Vessel)

<table>
<thead>
<tr>
<th>Tank Capacity (Tons)</th>
<th>Part No.</th>
<th>Length ft-in. (m)</th>
<th>Width ft-in. (m)</th>
<th>Height ft-in. (m)</th>
<th>Lift Lugs ft-in. (m)</th>
<th>Dip Tube in. (mm)</th>
<th>Empty Weight lb (kg)</th>
<th>Weight of CO₂ lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75</td>
<td>425400</td>
<td>15-8 (4.8)</td>
<td>4-3 (1.3)</td>
<td>6-5 (1.9)</td>
<td>7-0 (2.1)</td>
<td>4 (102)</td>
<td>4000 (1814)</td>
<td>5500 (2495)</td>
</tr>
<tr>
<td>3.75</td>
<td>425950</td>
<td>11-10 (3.6)</td>
<td>5-0 (1.5)</td>
<td>8-0 (2.6)</td>
<td>3-3 1/2 (1.0)</td>
<td>4 (102)</td>
<td>7500 (3402)</td>
<td>12000 (5443)</td>
</tr>
<tr>
<td>6.00</td>
<td>425899</td>
<td>15-10 (4.8)</td>
<td>5-0 (1.5)</td>
<td>8-0 (2.6)</td>
<td>5-2 (1.6)</td>
<td>4/6 (102/152)</td>
<td>9000 (4082)</td>
<td>16000 (7258)</td>
</tr>
<tr>
<td>8.00</td>
<td>425928</td>
<td>19-9 (5.6)</td>
<td>5-0 (1.5)</td>
<td>8-0 (2.6)</td>
<td>8-8 (2.6)</td>
<td>6 (152)</td>
<td>10200 (4627)</td>
<td>16900 (7558)</td>
</tr>
<tr>
<td>10.00</td>
<td>437372</td>
<td>23-4 (6.7)</td>
<td>5-0 (1.5)</td>
<td>8-0 (2.6)</td>
<td>8-8 (2.6)</td>
<td>8 (203)</td>
<td>11500 (5216)</td>
<td>20000 (9086)</td>
</tr>
<tr>
<td>12.00</td>
<td>437369</td>
<td>26-5 (7.9)</td>
<td>5-0 (1.5)</td>
<td>8-0 (2.6)</td>
<td>15-4 (4.7)</td>
<td>8 (203)</td>
<td>12650 (5738)</td>
<td>24000 (10886)</td>
</tr>
<tr>
<td>14.00</td>
<td>425406</td>
<td>19-6 (5.7)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>2-5/8 (2.2)</td>
<td>8 (203)</td>
<td>14000 (6350)</td>
<td>28000 (12700)</td>
</tr>
<tr>
<td>18.00</td>
<td>425407</td>
<td>25-0 (6.9)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>11-0 (3.3)</td>
<td>8 (203)</td>
<td>16800 (7621)</td>
<td>36000 (16330)</td>
</tr>
<tr>
<td>22.00</td>
<td>425408</td>
<td>28-6 (8.7)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>14-0 (4.3)</td>
<td>8 (203)</td>
<td>20500 (9299)</td>
<td>44000 (19958)</td>
</tr>
<tr>
<td>30.00</td>
<td>425410</td>
<td>36-6 (11.1)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>22-0 (6.7)</td>
<td>8 (203)</td>
<td>26500 (12020)</td>
<td>60000 (27216)</td>
</tr>
<tr>
<td>38.00</td>
<td>425412</td>
<td>44-6 (13.6)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>22-3 1/2 (6.8)</td>
<td>8 (203)</td>
<td>33000 (14970)</td>
<td>76000 (34474)</td>
</tr>
<tr>
<td>46.00</td>
<td>425414</td>
<td>52-6 (16.0)</td>
<td>7-4 (2.2)</td>
<td>9-8 (2.9)</td>
<td>25-4 (7.7)</td>
<td>8 (203)</td>
<td>37500 (17010)</td>
<td>92000 (41731)</td>
</tr>
</tbody>
</table>

Notes:
- ALLOW 4 FT (1.2 m) CLEARANCE FOR TILT DOWN CONTROL CABINET
- Copyright © 2011 Tyco Fire Protection Products
- Form No. F402840

Contact:
- One Stanton Street
 Marinette, WI 54143-2542
- +1-715-735-7411
- www.ansul.com